This is an Internal Document of The Parlay Group Inc.

Working White Paper for Policy Management

PARLAY POLICY MANAGEMENT WORKING GROUP

WHITE PAPER

Status:
internal draft

Issue:
0.03

Date:
August 1st, 2001
This document has been produced by, and is the copyright of, the Parlay Group Inc. This version is 0.02 and further versions may be released in the future. The Authors shall not be liable for any act you may or may not perform as a result of the contents of this document.

You may, at your discretion, copy and use the document and its contents for your own use but not for onward distribution.

No other licences are granted or implied by the Authors' release of this document.

CONTENTS

31
Introduction

1.1 Purpose
3
1.2 Revision Control
3
2 Motivation
3
2.1 Goals
4
2.2 Deliverables
4
3 Scenarios
5
3.1 3rd Party Application Service Provider Specific Usage Policies
5
3.2 Network Service Provider Usage Policies
6
4 Value Proposition
7
5 Architecture
7
5.1 3rd Party Application
8
5.2 Network Service AdminTool
8
5.3 The Network Policy Engine Complex
9
5.4 Network Resources
10
6 Realising Policy Management in Parlay
10
6.1 The IETF PCIM and Parlay Concepts
10
6.2 Concept Policy APIs
11
7 The Operational Model for Policy APIs
12
7.1 The Parlay Policy Service
13
7.2 Provisioning Policy Enabled Network Services
14
7.3 Accessing Network Service Policy Information
14
7.4 Provisioning & Acessing Network Hosted 3rd Party Policy Information
14
8 References
14
9 Glossary of Terms
15
10 Topics Under Consideration
15

1 Introduction

This document is a working white paper. It is written with the intent to inform the Parlay community in general and the Parlay Policy Management working group in particular. Policy management concepts are discussed and candidate policy management APIs are considered.

1.1 Purpose

A specific purpose for this document is to surface, solidify and establish a common understanding of the concepts and the scope of policy management within Parlay. It is also intended to encourage, shape and guide discussions within the Policy Management Working Group so as to facilitate a comprehensive definition of Parlay policy management APIs.

Section 2 highlights the motivation for Parlay policy APIs and establishes goals and deliverables. Section 3 illustrates scenarios where Parlay policy APIs are used to advantage, explicitly or implicitly, by 3rd party application providers, network providers and end users. Section 4 examines the value proposition for Parlay policy management APIs. Section 5 specifies the necessary architecture fundamentals for a Parlay policy management environment. Section 6 is used to discuss an approach to develop a policy information model for Parlay. Section 6 is also used to describe, at a high level, a candidate set of policy management APIs. In section 7 we discuss the operational model for the policy management APIs. The model describes the use of these APIs in the context of three basic scenarios. Section 8 is the references' section and section 9 is the glossary section. Section 10 is a working list of topics that may be reviewed for inclusion by the Policy Management WG in the near future.

1.2 Revision Control
Revisions of this document will be controlled using a numeric system where the first digit represents major revisions (changes resulting from a formal technical advisory committee review) and the second set of two digits represents minor revisions (any other changes).

Number
Date
Editor
Reason for Change

0.02

0.03
Dec 1st 2000

Aug 1st 2001
Lucent, Cisco

Lucent, Cisco, Siemens, Ulticom
Second Working Draft.

Third Working Draft.

2 Motivation

There are a several reasons that motivate the need for Parlay policy management APIs. Some of the main ones are:

· The cost savings and revenue generation potential of policy management techniques and tools. Network service providers and ASPs can manage networks and services using policy management techniques and APIs to their advantage. Using these, network operating costs can be reduced and new revenue generation opportunities can be appropriately availed.

· The need for open, standard and relatively simple policy management APIs that can be used by network service providers, 3rd party applications providers and applications developers to manage and develop services and applications.

· The need for a general policy management infrastructure within Parlay. In a number of Parlay disciplines, for example, Connectivity Management and OAM, reference is made to policy management APIs either explicitly or implicitly. A general policy management infrastructure, based on a policy information model, will help establish the foundations for standardized Policy APIs. Policy APIs may then be derived across all Parlay working groups with consistent and reusable characteristics.

2.1 Goals

A principal goal for the policy management working group is to specify policy management APIs for network services and 3rd party applications. These specifications must be independent of network architectures and protocols. A related and equally important goal is to specify an information model for policy management.

By an information model we mean a scheme that represents policy information in a flexible but unambiguous manner. We also speak, informally, of a policy domain. A policy domain encapsulates all policy information about a given domain, e.g., a policy domain for Authentication services or a policy domain for QoS services. An information model will help to ensure that policy domain definitions are well defined, unambiguous, extensible and reusable. It will also be the standard source from which all policy API specifications, across Parlay working groups, will derive their structure and meaning.

More specifically, the Policy Management working group should specify:

· A Parlay policy information model. The information model must be general enough to allow for the definition of policy domains across the various Parlay working groups, e.g., Network Management, Charging and Billing, etc. It must also be general enough to allow for the definition of 3rd party application specific domains. It is strongly recommended that the Policy Core Information Model (PCIM), as specified by the IETF Policy Framework working group, be used as the basis to develop a Parlay policy information model.

· Definitions of policy domains for 3rd party applications and Parlay network based services.

· Definitions of policy APIs and related operations for use by 3rd party service providers and network providers.
The next section details some of the underlying tasks. From here on we use the term policy class to refer to a formal representation of policy information. The notion of policy class is explored in section 6.

2.2 Deliverables
To support the goals described in section 2.1 the policy management working group should facilitate the development of the following items. In particular, the first and second are fundamental requirements and hence must be met. The deliverables, then, are specifications for:

1. Generic Parlay policy classes. It is recommended that these be based on the IETF PCIM definition of policy classes (also see section 6).
2. Policy APIs, associated operations/methods, event notifications and their semantics.
3. Parlay services' policy classes, e.g., QoS classes, Security classes, Billing and Charging classes, etc. These derive their structure from the generic policy classes.
4. Enable third parties to develop application specific classes, e.g., end-user profile classes, end-user charge and billing classes, etc. These, also, derive their structure from the generic policy classes.
Additionally, the policy management working group must develop:
· Use cases that illustrate and motivate the use of policy management APIs. These may be used as high level specifications from which policy concepts, i.e., APIs and policy classes, are developed.
· A working white paper that is used by the policy management working group to develop a common understanding of underlying concepts. The white paper should highlight the use of policy APIs in context of a policy service architecture.
Consistent with the standard Parlay approach all specifications must be developed in UML. The UML definitions may then be used to derive technology specific instances, e.g. CORBA, COM, JAIN, of the Parlay policy APIs.

3 Scenarios
This section is used to illustrate the use of policy management APIs by 3rd party application service providers and network service providers. It also illustrates the interaction of end users with a policy managed service or application. The examples are meant to motivate the definition of policy classes, APIs and operations.

3.1 3rd Party Application Service Provider Specific Usage Policies

A third party service company that runs a financial brokerage call center wants to create an 'off hours' service for its clientele. It obtains Interactive Voice Response (IVR) services from a Parlay compliant network provider. The network provider also offers to host application service provider (ASP) specific policies. The ASP uses Parlay policy management APIs to establish and manage application specific policy information in the network. The network service provider has a support environment that includes a policy complex (see section 5.0) where policies are hosted and executed.

The ASP has defined 3 levels of service: Gold, Silver and Bronze. These levels are defined in terms of policy rules that are resident in the network policy complex. End users fall into one of the 3 categories but may opt to change their category. Gold service users get personalized greetings and a run down of their account and are able to leave messages for their brokers. They may also choose from a number of policy specified options offered as menu items by the IVR system. One of these is the option to make a free consulting call (using the IVR system) to a financial expert. Silver service users get the same services but must pay to obtain consulting services from a financial expert. Bronze service users only get a run down of their account.

Alex, a Silver service user chooses to obtain financial advice. He has the choice of using his credit card to pay the charges or use to a pre-paid service offered by the ASP (in collaboration with the network provider). He chooses to use the pre-paid service. These options are encapsulated in the policy rules specified by the ASP.

Similarly, Jim a user of the Bronze service wants to upgrade his service to Gold. Application authorization policies specify criteria to authorize the upgrade. Jim meets the criteria and becomes a Gold service user. He is also authorized, via charging policies, to apply his service charges to his current pre-paid card that he has obtained from the ASP.

The ASP anticipating pressure from competition uses the Parlay policy management APIs to add (and activate) new rules to its usage policies. The new policies specify criteria that permit Silver and Bronze service users to obtain financial advice free of charge if they call during off hours on Tuesdays and Thursdays. Policy rules also ensure that Silver service users get priority, for out bound calls from the IVR system, over Bronze service users.

The ASP also registers for policy event notifications with the network. The network notifies an application representing the 3rd party service provider of the success (or failure) of updating the usage policies. Event notifications are also sent to the ASP when end users ask for upgrades of service levels or ask for charges to be applied to their pre-paid cards. Additionally the ASP's applications can query the network for usage statistics via a statistics API. Usage statistics enable the ASP to monitor requests by end users and to monitor logs on the activity of specific policy rules.

3.2 Network Service Provider Usage Policies

A network service provider sells network bandwidth and bandwidth management services to ASPs. The ASPs offer a variety of IP based applications to end users. These include e-mail services, e-commerce applications as well as audio and video streaming applications. The ASP is anxious to minimize service expenses while remaining competitive and attentive to customer demand.

Provisioned QoS:

The network service provider defines QoS policies to manage bandwidth requirements of an ASP. Policy rules help classify applications by their bandwidth demand characteristics, time of day and source & destination addresses. Additional policy rules are then used to determine the specific QoS treatment that is applied to an application, i.e., the application is assigned a priority class. Thus e-commerce applications are assigned a higher priority class than e-mail traffic. This ensures that the bandwidth 'bought' by an ASP is managed such that applications with higher revenue potential get preferential treatment. This is also cost effective for the ASP since it minimizes the need to 'over purchase' bandwidth as was done before Policy Managed QoS services were available. It works well for the network service provider too who can collect revenue from the bandwidth sold, from the management services provided and from better utilization of its bandwidth resources.

Signalled QoS:

Additionally, the network service provider offers policy based signalled QoS services. In this case an application representing the ASP requests bandwidth with specific delay and jitter characteristics from the network. These are typically audio or video streaming applications. The network uses policy rules to dynamically assign a priority class to the application and checks to see if the requested conditions can be met. Based on current network capacity it notifies the application of the charges (based on charging policy criteria) that will be applied for the specific request. Upon acceptance and verification (based on authentication policy criteria) the application is allocated the requested resources.

The demand for additional QoS service criteria increases with the increase in the ASP business. In order to accommodate additional criteria the network service provider uses the Parlay policy management operations' APIs to add and activate new rules reflecting the new QoS criteria. This in turn allows the network service provider to offer a more refined QoS service set. That results in increased business revenue and enables a finer grained control of network resources.

Use of policies to offer provisioned QoS and signalled QoS services allows the network service provider a flexible, extensible and cost effective means to control network resources. It also opens up the potential to generate revenue in new and novel ways. The ASPs realize cost savings from improved bandwidth management and benefit from the on-demand characteristics of a policy managed signalled QoS service. They also off load the task of maintaining policy management systems to the network provider.

4 Value Proposition
Policy management techniques and Parlay policy APIs have a number advantages for ASPs, network service providers, application developers and the Parlay community at large. These are examined below:

· The value to ASPs. Parlay policy management APIs will give ASPs an open, standard, flexible and cost effective means to manage and configure their policy enabled applications. They will benefit from economies of scale derived from a network hosted policy management infrastructure. The open characteristics will engender global reuse of the APIs. Additionally a policy based approach will give application service providers the means to fine tune revenue enhancing characteristics of their applications thereby giving them competitive advantage.
· The value to network service providers. Parlay Policy based APIs will give them the means to manage services and network assets in a standard, scaleable, flexible and cost effective manner. A policy based approach opens up the potential for use of traditional services, such as billing and charging, QoS, security, hosting, load balancing, etc., in novel new revenue generating ways.
· The value to application and service developers. Policy APIs are potent tools that will enhance the value of applications. Policy Management APIs will enable them to effect real time changes in service and application characteristics in a manner that is flexible and cost effective.
· The need for a general policy management infrastructure in Parlay. This will establish the foundations for a common, standard information model from which definition of policy APIs and management operations may be derived across all Parlay working groups.
5 Architecture
The Parlay Policy Management Architecture is depicted in figure 1.0 below. The elliptic bubbles represent elements or agents that perform the functions associated with their labels and the numerals represent the interface relationships between two elements. The Parlay policy specific interfaces are labelled 1, 2, 1+, 2+. It should be noted that the elements and associated relationships are functional representations only. Detailed implementation specifics are outside the scope of Parlay and hence these are not considered in this paper.

[image: image1.wmf]NETWORK RESOURCES

.

3rd PARTY APPLICATION

POLICY REPOSITORY

POLICY DECISION POINT

POLICY ENFORCEMENT POINT

NETWORK POLICY ENGINE COMPLEX

3

4

5

FIGURE 1.0: PARLAY POLICY ARCHITECTURE

1

2

NETWORK SERVICE ADMIN TOOL

1+

2+

5.1 3rd Party Application
A 3rd Party Application may be thought of as a software agent that represents the ASP. It has two logical policy specific Parlay interfaces, namely, 1 & 2. Through interface 1 an authorized 3rd party (provisioning) application interacts with the network to establish application specific policy classes, e.g., the application client usage policy classes, application authorization policy classes and the application charging policy classes. These are established on the Parlay policy repository within a policy complex that is hosted by the network. The application may also use this interface to update and modify the application specific policy classes. Notifications of successful (unsuccessful) repository updates, usage statistics, etc. are passed along this interface from the Parlay policy infrastructure to the application.

Through interface 2 a (non-provisioning) 3rd party application interacts with the Parlay policy infrastructure to receive event notifications associated with policy actions and to send responses to these. It also uses this interface to request services from the network and receive corresponding responses. For example:

· Notification from the network of a request by an end user to upgrade his service level and the corresponding authorization from a 3rd party application to apply charges to the user's pre-paid card.

· Request for a improved QoS level of service, e.g., for increased bandwidth and improved delay characteristics, by a 3rd party streaming audio application, and, the corresponding response from the (policy enabled) Parlay network.

5.2 Network Service AdminTool

The Network Service AdminTool is the counterpart in the Network Service Providers' environment to the 3rd party provisioning application described above. It uses interface 1+ to define, modify and update network service policy classes. These policy classes are maintained within the network policy complex. Examples of service policy classes include QoS classes, Billing and Charging classes, Authentication classes, Load Balancing classes, etc. Through interface 1+ the AdminTool receives notification of successful (unsuccessful) updates of policy class information and policy usage statistics from the network.

The Network Service AdminTool uses interface 2+ to receive notifications of policy based events; e.g., notification that a request from a 3rd party application for improved QoS has been accepted or rejected. The AdminTool may also be used to over-rule policy decisions and Interface 2+ is used to accomplish this.

5.3 The Network Policy Engine Complex
As suggested by its name the Parlay Network Policy Engine Complex resides within a network service provider's domain. The complex comprises three functional elements, The Policy Repository, The Policy Decision Point and The Policy Enforcement Point. These three elements are fundamental to the implementation of policy based network services and policy based 3rd party applications in Parlay. It should be also noted, that the scope of Parlay policy interface specifications is restricted to interfaces 1, 2, 1+ and 2+ (figure 1.0).

· The Policy Repository
The Policy Repository (PR) is a Database where policy classes and related information, e.g. registration for event notification, is stored and managed. Updates and modifications to Policy classes are managed here. Statistics on Policy related actions are also logged here. These may be requested for by applications via a statistics API.

Application specific and network service policy classes will be derived from the base classes of the Parlay information model -- also see section 6.1. Service classes will incorporate service policy rules. Third party provisioning applications and the AdminTool will use the Parlay policy APIs to populate the PR with policy class information. This information will be mapped to an internal representation in the PR.

The PR has two logical Parlay interfaces and one non-Parlay interface. These are 1, 1+ and 3 respectively (figure 1.0). Interfaces 1 and 1+ link the PR to 3rd party applications and to the Network Service AdminTool respectively. Interface 3 links it to a Policy Decision Point. The latter uses information in the PR to make policy driven decisions. In practice, the PR may be implemented as an LDAP directory service complex.
· The Policy Decision Point
The Policy Decision Point (PDP) is software agent where Parlay policy decisions are identified. The identification is based on policy rules using information supplied by 3rd party applications, network services or end users. State information available from the network may also be used to identify policy decisions. A Policy Decision Point also manages notifications based on policy related events such as the request from an end user to upgrade his service or one based on a bandwidth threshold being reached. In either case the notifications are directed to the appropriate application or service that had registered for these with the Policy Repository.

The PDP has two logical Parlay interfaces, 2 and 2+ linking it to a 3rd Party Application and the Network Service AdminTool respectively (figure 1.0). Interface 4, a non-Parlay interface, links the PDP to Policy Enforcement Point where policies identified by the PDP are enforced. In practice, the PDP may interact with the Policy Enforcement Point via the COPS protocol although other protocols could be used.

· The Policy Enforcement Point
The Policy Enforcement Point (PEP) is a software agent running on behalf of a network resource (possibly on it). The PEP enforces policies identified by the Policy Decision Point. Network resources could range from billing and charging systems, user profile management systems, etc., to network elements such as routers, gateways, etc. The PEP has two logical interfaces (figure 1.0), 4 and 5, neither of which is a Parlay interface. The former connects it with the Policy Decision Point, possibly via the COPS protocol, and the latter with network resources. The protocols used for interface 5, in practice, depend on the characteristics of the network resource and the required task. For example, for signalled QoS bandwidth management tasks this may be RSVP. For other network management tasks this could be SNMP. The variety of protocols increases when the network resources are 'high level' systems such as billing systems or user profile management systems.

5.4 Network Resources
Network Resources represent the logical targets to which policy actions are applied by Policy Enforcement Points. Network Resources could range from 'high level' systems such billing and charging systems, user profile management systems to network elements such as routers and network gateways. Network Resources have only one logical interface. This is the non-Parlay interface 5 that interfaces a network resource to a Policy Enforcement Point (figure 1.0).

6 Realising Policy Management in Parlay
In section 6.1 we review salient aspects of the Policy Core Information Model (PCIM) defined in the IETF. These include the definition of policy classes and relationships between them. We, informally, review the concept of a policy rule and policy group and link these to the notion of policy classes. Our goal is to help facilitate the definition of Parlay policy classes as extensions of PCIM policy classes. We explore this notion here with the intent of opening up discussions within the Parlay Policy WG leading, ultimately, to the definition of a Parlay Policy Information Model.

In section 6.2 we explore some concept policy APIs for domain definition, policy management operations, management of notifications and resource usage. We intend to use these concepts, too, as a basis for discussion within the Policy Management working group. We aim to refine these through discussions and apply them to defining policy APIs for use by 3rd party applications and Parlay services.
6.1 The IETF PCIM and Parlay Concepts

The IETF Policy Framework Working Group has defined an object oriented information model that describes how policy information may be represented. The information model is called the Policy Core Information Model (PCIM). PCIM specifies how policy domains may be defined and information within them organized. The fundamental construct in PCIM is the notion of an abstract policy class. All other policy classes are specializations of this class. The PolicyGroup, PolicyRule, PolicyCondition, PolicyAction and PolicyTimePeriodCondition classes are of particular importance to Parlay. These classes can be used to define service or application specific policy domains in Parlay.

Informally, a PCIM PolicyGroup is a specific grouping of policy rules. A PolicyGroup may contain or be contained in other PolicyGroups. In the same vein a PCIM PolicyRule is a relationship between a set of conditions and a set of actions. When the set of conditions is satisfied the associated actions are triggered. A policy rule could belong to many Policy groups. Its condition and action parts are specified by the PolicyCondition and PolicyAction classes. The PolicyTimePeriodCondition class may be used to specify a time-period during which a particular rule is active or inactive. PCIM defines other classes that specify relationships between the above defined classes. One such class is the PolicyGroupInPolicyGroup class. This class can be used to define a nesting relationship between PolicyGroup classes.

The PCIM representation scheme is flexible, extensive and rigorous. A Parlay policy information model would benefit from using PCIM constructs to define Parlay specific classes that would be specializations (in an object-oriented sense) of the PCIM classes. It should be noted that while the PCIM model is defined in a declarative manner it is not imperative that it should implemented using a declarative approach. Similarly the choice to implement any Parlay extension of PCIM, using either a procedural or declarative approach, rests with the developer.

6.2 Concept Policy APIs

We propose that a Parlay Policy service, at a minimum, include the functions shown below (also see figure 2.0). The purpose of these service functions will become clear when we describe the associated APIs.

· Policy Domain Management

· Policy Event Management

· Policy Statistics

· Request Management

[image: image2.wmf]Parlay APIs

Applications in

Unsecured Space

FRAMEWORK

SVC A..SVC E

POLICY SVC

NETWORK INTERFACE

•

Policy Domain Management

•

Policy Event Management

•

Policy Statistics

•

Request Management

…...

…...

Network Resources

FIGURE 2.0: PROPOSED PARLAY POLICY SERVICE

For clarity, we refer to a policy API by its service function name along with the term 'API' appended at the end. Thus:

· The Policy Domain Management API

This API allows a 3rd Party Application and the AdminTool to define and manage policy classes and related information via interfaces 1 and 1+ respectively (figure 1.0). We propose that it support, at least, the following primitives operations:

· Create/Modify/Delete/Make Public a Policy Class.

· Create/Delete/Make Public a Policy Event.

· Activation/De-activation of rules.

For now we will assume that a Parlay policy class is a specialization of a PCIM class (section 6.1). Thus, e.g., A policy rule or a group of policy rules are both classes. A policy event is the occurrence of a designated action associated with a policy rule.

· The Policy Event Management API

This API allows a 3rd party application and or a Parlay service to register or de-register for specific policy events notifications via interfaces 1 and 1+ respectively and, to receive notification of these via interfaces 2 and 2+ respectively. We propose that, at least, the following primitive operations should be supported:

· Register/De-Register for events.

· Handling of event notification from the policy complex.

· The Policy Statistics API

This API gathers policy related statistics from the network. We propose that, at least, the following set of statistics should be gathered:

· Success (failure) statistics of operations on policy classes, events.

· Number, name, time stamp of policy events that are "triggered" during a time period.

· The Request Management API

This API is used to request exposure of public policy classes and policy events supported by a policy-enabled service or application. The API is also used by applications to specify selection of options from an exposed policy class, e.g., the selection of a QoS option offered by an exposed policy object. We propose that, at least, the following set of primitive operations should be supported:

· Request Exposure of Public Policy Classes and Events.

· Select and Set an option in a Public Policy Class.

7 The Operational Model for Policy APIs

In this section we describe, in informal terms, an Operational Model (OM) for the Parlay Policy Management APIs. The OM specifies the scope and use of policy APIs. It comprises three components that are described below. We also highlight a fundamental assumption that was introduced in the previous section. This is the existence of a Parlay Policy Service. We first describe the service and then examine its role within the OM. The OM may require an extension to Parlay Interface 5 or possibly even the introduction of new interface, Interface 7 (see figure 3.0) to support the provisioning of policy classes.

[image: image3.emf]Framework

operator

admin

Enterprise

operator

admin tool

Service

supplier

admin tool

1

1

4

4

3

3

5

5

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

Telecom Network

Not in scope of

Parlay Phase 2

Not in scope of

Parlay Phase 2

2

2

6

6

Client

Application

Not in

 scope

of Parlay

Phase 2

7

7

FIGURE 3.0

7.1 The Parlay Policy Service

We assume the existence of a Parlay Policy Service (PPS). Such a service could be part of the Parlay Framework or could be an independent service. We leave the determination of its disposition to discussions within the Policy Management WG.
The PPS may be invoked by the Network Service Admin Tool(s) or by 3rd Party Applications. It is invoked to:

· provision policy classes associated with a given policy enabled network service,

· provision 3rd party policy classes that are maintained within the network,

· provision policy based events

· expose public policy classes to 3rd party applications

· expose policy based events, etc.

We assume that the PPS supports management functions that have counterparts in the set of policy APIs. For example a 'Create Policy Class' function is associated with the 'Create Policy Class' API and a 'Make Policy Class Public' function is associated with a 'Make Policy Class Public' API, etc.

The policy Operational Model (OM) comprises three inter-related components. These are:

· The provisioning of policy enabled network services

· The access to 'public' network service policy information by 3rd party applications

· The provisioning of and access to network hosted 3rd party policy information.

7.2 Provisioning Policy Enabled Network Services

This component of the OM focuses on the use of Parlay policy management APIs in conjunction with the PPS to provision policy enabled network services. In a typical scenario a network service provider uses the Network Service AdminTool to invoke the PPS and uses the policy management APIs to accomplish provisioning tasks. These include establishing policy classes for a new network service, updating policy classes for existing services, establishing policy events, etc.

7.3 Accessing Network Service Policy Information

This component of the OM highlights the use of policy management APIs by 3rd party applications to request the PPS to expose network service policy classes. Only policy classes that have been declared 'public' may be exposed to 3rd party applications. The 3rd party application may also ask to view and subscribe to a network service's policy related events. If permission is granted the 3rd party application is allowed to select parametric values exposed by a public policy class. It may also choose to be notified when a given policy event occurs. For example, a 3rd party application may use this capability to select a QoS value, from an exposed rule, selecting a 256Kbs service from many other choices. It may also choose to register for a (policy enabled) event that notifies it when a given traffic congestion level has been reached. Note that the 3rd party application is using a network service's established policies to achieve its ends. The Parlay policy management APIs and the PPS enable it to do this.

7.4 Provisioning & Accessing Network Hosted 3rd Party Policy Information

This is the 3rd component of the OM. It highlights the use of policy management APIs and the PPS (by a 3rd party application) to provision 3rd party specific policy information on network facilities. This use is analogous to the provisioning of policy enabled network services discussed above. Once the 3rd party policy information has been hosted on the network other applications, belonging to the 3rd party application service provider, can request exposure to the associated 'public' policy classes and policy events. Note that in this case a 3rd party application uses its own policy rules that are hosted by the network. It uses the Parlay policy management APIs and the PPS to manage them.

8 References

1. A Primer on Policy-based Network Management, Hewlett-Packard Company, September, 1999. www.openview.hp.com/Uploads/primer_on_policy-based_network_mgmt.pdf
2. Policy Enabled Networks, Mark Stevens, Walter Weiss, Bell System Technical Journal, October-December, 1999. www.lucent.com/minds/techjournal/oct-dec1999/pdf/paper05.pdf
3. Policy Framework, J Strassner, Andrea Westerinen, etal, Draft IETF policy framework working group, July, 2000

4. Requirements for a Policy Management System, Hugh Mahon,Yoram Bernet, Shai Herzog, IETF Draft, April 2000

9 Glossary of Terms

ASP
:= Application Service Provider

COPS
:= Common Open Policy Service

IETF
:= Internet Engineering Task Force

PCIM
:= Policy Core Information Model, Policy Management working Group, IETF

QoS
:= Quality of Service; Signalled QoS := Dynamic request for QoS assignment

RSVP
:= Resource Reservation Setup Protocol

SLA
:= Service Level Agreement

SNMP
:= Simple Network Management Protocol

10 Topics Under Consideration

1. Parlay Policy Service: A Framework Capability? (Resolved: PPS is a framework service)

2. Defining Condition classes that contain string expressions to express policy constraints. (Resolved -- see specifications document)

3. Defining Action classes that contain string expressions to express policy information changes. (Resolved -- see specifications document)

4. Define application interactions with the policy complex in terms of transactions, i.e., start transaction and commit transaction pairs. (Resolved -- see specifications document)

5. Permit applications to trigger policy events. (Resolved -- see specifications document)

6. APIs for Service Level Agreements (Deferred to Parlay 4.0)

7. Update Parlay Subscription procedure to accommodate policy enabled services and applications. (Deferred to Parlay 4.0 and subject to discussion with the Framework WG)

8. Specify and define a policy enabled service. (Deferred to Parlay 4.0 and the formation of a service specific WG)

9. Specify the semantics associated with each API and data structure as well as those that are associated with interactions between a 3rd party application (or Parlay service) and the framework policy service (or with a policy enabled service/application). (Deferred to Parlay 4.0)

10. Document assumptions made with regards to access authorization and security. (Deferred to Parlay 4.0 and subject to discussions with Framework WG)

11. Allow boolean expressions in 'IpPolicyConditionExpression'. (A strong recommendation for Parlay phase 4.0).

Note that proposed action will violate the IETF policy core information model's definition (and the current parlay information model's definition) of a 'condition'. The PCIM assumes that a condition predicate is an 'atomic' predicate. A PCIM defined 'condition' is a compound boolean expression formed by combining atomic condition predicates. The 'condition' is either in DNF (Disjunctive Normal Form) or CNF (Conjunctive Normal Form). The proposed action will permit the creation of a 'condition' that is expressed in terms of an arbitrary boolean expression. It will ease the burden on an application developer. This is so since the developer will no longer be restricted to creating rules with conditions expressed in DNF or CNF.

12. Simplification and generalization of the process to create/access rules and policy information. In particular, develop procedures to access and create information in 'bulk'. (Defer - discuss relevance to Parlay 4.0)

Author: SQ, PH, PM WG
08/03/01
15

